
Critical dynamics and the potential moving approximation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 1355

(http://iopscience.iop.org/0305-4470/13/4/026)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 04:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 1355-1366. Printed in Great Britain 

Critical dynamics and the potential moving approximation 

Ya’akov AchiamtS 
Nuclear Research Centre-Negev, POB 9001, Beer-Sheva, Israel 

Received 5 March 1979, in final form 4 July 1979 

Abstract. The real-space time-dependent renormalisation group approach is applied to the 
study of a square lattice. A decimation and a spin-block transformation are performed 
according to the potential moving trick suggested by Kadanoff. A value z = 2.2 is found for 
the dynamic index characterising the two-dimensional lattice. 

1. Introduction 

Systems close to a critical point exhibit anomalies in static and dynamic properties. 
These anomalies have been the subject of many different studies. One of the leading 
methods is the renormalisation group (RG) approach, which provides a verification of 
the hypothesis of universality, a way to extract the critical exponent, and a method to 
calculate thermodynamic and correlation functions. Most of the dynamical models are’ 
based on the Glauber model (Glauber 1963) and were analysed using the €-expansion 
around four and six dimensions (see, for example, Hohenberg and Halperin 1977). 
Recently the real-space RG calculations have been applied to the study of dynamic 
phenomena (Achiam 1978a, b, 1979, Achiam and Kosterlitz 1978, Kinzel 1978, 
Mazenko et a1 1978, Suzuki et a1 1979, Chui et a1 1979). The values obtained for the 
critical exponent, z ,  which characterised the dependence of the relaxation time on the 
correlation length, seem to be in good agreement with the results obtained using more 
conventional methods such as Monte Carlo simulations (Stoll et a1 1973) and high- 
temperature series (Yahata and Suzuki 1969, RBcz and Collins 1976). If the results 
concerning the dynamics are as accurate as the results for the statics (and we hope so), 
the real-space time-dependent renormalisation group approach (TRG) can be a power- 
ful tool which provides a numerical estimate as well as a better understanding of the 
critical dynamic scaling and the critical modes. 

In this paper we are studying the implication of Kadanoff’s ‘potential moving 
approximation’ (Kadanoff 1976) on the TRG. This approximation has the advantage of 
being simple and easy to interpret, gives reasonable static critical exponents, and 
includes the Migdal approximation (Migdal 1975) as a limit. The potential moving 
approximation is easy to extend to any lattice dimensionality and scale factor b. 
However, as the dimensionality d diverges from l D ,  the critical static exponent 
becomes worse. 
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We obtain in 2D, z = 2.2. This value falls within the range of other estimates 
obtained by using other methods. It is surprisingly close to the value we obtained 
previously using the TRG and the second-order cumulant approximation on a triangular 
lattice (Achiam 1978b). The study of the triangular lattice with the cumulant approx- 
imation has the advantage of fairly good static exponents; hence this value of z is quite 
reliable. 

This paper is organised as follows. In 9 2 we review the basic ideas of the RG 
technique and the potential moving approximation. These ideas and notations are used 
in the TRG and are reported in more detail in the article by Kadanoff (1976). The 
general aspects of the TRG are discussed in 8 3. They are used in § 4 to calculate z using 
the potential moving approximation with the decimation and spin-block trans- 
formations. The technique and the results are discussed in § 5, and compared to other 
approximations which are based on the Migdal approximation. 

2. The 'potential moving approximation' 

In the application of the RG to the equilibrium state of an king spin system, one starts 
with a probability distribution, P ( a ) ,  which is a functional of all the spins {mi}, ui = *l, 
defined on a lattice. Then one defines a transformation of P ( v )  to a new probability 
distribution of a set of spin variables {pi}, pi = *l. The { p }  are on a lattice which has the 
same symmetry as the {m}  lattice, but has a lattice constant larger by a factor of b. The 
transformation is of the form 

P' (p)  = c nu, P)P(U)  
{U} 

where T is subject to the following conditions. 
(i) It has to preserve the normalisation of P: 

c 7Yv, P I =  1. 
bL) 

(ii) It has to be non-negative: 

T(m, p )  2 0. (2.3) 
(iii) It should not change the symmetry of the lattice. 
The probability distribution P can be represented by a set of interactions, K = {Ku}, 

which are coupled to spin operators, S(v) = {SU(v)} ,  
r 

where the partition function 2 normalises P. 

using a renormalised reduced Hamiltonian, 
According to equations (2.1)-(2.3), P ' ( p )  can be written in a form similar to (2.4), 

H'b.4 = c K&Su(p)  (2.5) 
U 

and the RG transformation can be considered to be a transformation upon the 
parameter space K, 

K' = RK. (2.6) 
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The fixed point of this transformation, K* = RK*, is associated with a critical point (or a 
zero correlation) (Wilson and Kogut 1974). The eigenvalues of R are associated with 
the critical static exponent. 

Usually, the transformation (2.1) can be performed only approximately. In one of 
the approximations, the so-called ‘variational method’, one calculates I!?>, 

exp (CL)]= TruT(a, cc )  exp [ m a )  - A(P, (2.7) 
such that 

Tr,TruT(a, p )  exp [I!?(a)]A(p, a)  = 0. 

The new reduced Hamiltonian will generate a free energy which is smaller than the 
exact one. The error in the calculation will be of second order in A. 

Kadanoff (1976) suggested a A of the form 

where a, (a) are local interactions which appeared in S ( a )  (e.g. nearest-neighbour 
coupling in one direction), and 

C qz = 0. (2.10) 
i 

Under conditions (2.9)-(2.10) the quantity H ( a )  - A(@, a)  can be interpreted as a 
Hamiltonian from which part of the interactions is moved from one point on the lattice 
to another point such that the total amount of interactions (bonds) is not changed. 

Two examples of RG transformation, both leading to the same recursion relations, 
have been discussed by Kadanoff. We will apply them to the dynamical models; hence 
we will describe them briefly. Starting with a square lattice, one divides the spins in the x 
direction into blocks of length of b lattice constants. The interactions in the y direction 
are moved away via the potential moving trick to the edges of the blocks, in the 
decimation transformation (figure lb) ,  or all to one special location on the lattice, in the 
spin-block transformation (figure IC). Now the blocks in the x direction are decoupled 
and the RG transformation in this direction can be performed according to one of the 
two T: 

Td = n ( F k b L ,  y - V k b L ,  y )  
k,y  

where L is the lattice constant, in the decimation transformation, and 

(2.1 1) 

T b  = n (coshK/2)[1 + ( c + k b L , y + ( + k b L + l , y ) C L k b L , y  tanh(p) 
k 9 y  

4- a k b L , y ( + k b L + l , y  tanh2pl exp(-KUkbL,y(+kbL+l, y )  (2.12) 

in the block-spin transformation. In equations (2.11) and (2.12) we assumed a 
Hamiltonian with nearest-neighbour interactions only: 

where i, J’ are nearest neighbours. The parameter p in (2.12) is fixed by 

(2.13) 

tanh2p = tanh K (2.14) 
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cc U *. . . x.. . e-.. . . x * . . * 

(cl 
*. . . x.. . e-... . x.. . * I 
Figure 1. ( a )  The lattice before the RG transformation. ( b )  The first potential moving in the 
decimation transformation. The x denotes the p variables which are not summed up. ( c )  
The first potential moving in the spin-block transformation. The full lines and the dotted 
lines represent K and p interactions, respectively. The x denote the p variables. All the old 
y interactions are collected at the broad line. ( d )  The effective interactions after the RG 
transformation in the x direction. 

so that condition (2.2) is fulfilled. In both transformations the result is 

K: = tan-' (tanhbKx) = RbK,. (2.15) 
In the decimation transformation one can perform once again the potential moving 

(2.16) 

trick, now in the x direction. Hence 

K, (6) = bR bKx. 

After the previous x transformation the y interactions were 

K )  = bK, (2.17) 

and after the RG in the y direction they become 

K,(b) = Rb(bKy).  (2.18) 

The spin-block transformation is a little more complicated. Before performing the 
RG in the x direction, infinitesimally small interactions are removed from each u-p 
coupling and are put into the u-p coupling of the two spins which are still coupled in the 
y direction. This new coupling becomes very strong and hence we shift the y coupling 
from the U to the p. We can now perform the x transformation, leading to (2.15). The y 
interaction is spread over all the new lattice, leading to (2.17) (see figure Id). This 
procedure is repeated in the y direction, leading finally to the relations (2.15) and 
(2.18). 

We would like to stress three points before we continue to the description of the 

(a) We limit our discussion to two dimensions. The generalisation to higher 

(b) In the Migdal transformation the recursion relation (2.15) is also used for the 

TRG. 

dimensionality is straightforward (Kadanoff 1976). 

other directions. 
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(c) Within the potential moving approximation we are allowed to change a finite 
number of interactions, and to assume that the other interactions of the same type are 
not changed. 

3. The Glauber model and the time-dependent renormalisation group 
transformation 

The dynamics we are going to study is that of the Glauber-Ising model (Glauber 1963). 
This model describes the time-dependent behaviour of a large interacting spin system 
whose equilibrium is determined by an Ising Hamiltonian. The system is brought to a 
constrained equilibrium state. Then, at time t = 0 the constraint is removed and the 
system relaxes towards the final equilibrium via an interaction with a heat bath. The 
heat bath is not treated explicitly in the model, and during the relaxation neither the 
magnetisation nor the energy of the system is conserved. Only one spin is allowed to flip 
at a time, with transition probability rate Wi({a}) .  This procedure can be described by 
an empirical master equation for the spin probability distribution, P({a}; t ) ,  and a bare 
time scale, 7, of a spin system, {a = *l}, 

dP({a}; t)/dt = -E W;.(~rl ,  . . . , ~ j ,  . . . , U,)P(UI ,  . . . , Uj, . . . , a,,; t )  
i 

=L(a)P(a, t )  = -1 (1 -pi) wj(a)P(a, t) (3.1) 

where pi is a spin-flip operator: p j f ( a l , .  . . , Uj, . . . , a,) =f(al, .  . . , -aj,. . . , a,,), and 
the transition probability satisfies the detailed balance which ensures the ergodicity of 
the system: 

i 

(1 - P i )  W.(a)Pe(a)  = 0 (3.2) 

where e denotes equilibrium. The master equation (3.1) can be written in a slightly 
different form: 

dP(a, t)/dt = -%$(a, t) (3.3) 

where +(a, t)  measures the deviation from equilibrium: 

+ (a, t )  = P(a, t ) / P e ( g )  (3.4) 

and Pe(a)  = P(a, a)) is of the form (2.4). In the following we will restrict ourselves to fi 
with nearest-neighbour interactions (2.13) only. The operator 9 is obtained from 
(3.1)-(3.2), 

2?i, 2 i  = PeWi(l -pi). (3.5) 
i 

For further properties of the Liouville operator L (or g), the reader is referred to 
Yahata and Suzuki (1969) and references therein. We shall only note that, since Wi 
does not depend on the history of the system, the Glauber model is a Markovian one. 
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The relation (3.2) does not determine WI uniquely. We will use (Achiam and 
Kosterlitz 1978) 

112 Wg(~I)=[f ‘e (v~,  * a ,  -ut, * - 9 cn)/Pe(vl, - V I ,  * . 7 vn)I * (3.6) 

With the present Hamiltonian, (2.13), WI is 

W ,  (a;)  = exp ( c r,) (3.7) 

(the j are nearest neighbours of i). 
The TRG is the standard RG transformation, (2.7), applied to the master equation 

(3.1) or (3.3), followed by time scaling 7‘’ b’r which leaves the master equation 
invariant. More explicitly, expanding q5 as follows, 

q5 = 1 + h, (t)OU ((T) = 1 + ( h  . O), 
U 

the master equation reads: 

P,(a)d/dt[h 0 ( ~ ) ] = - 2 ’ [ h .  O(a)] .  (3.9) 
Under the RG transformation (2.7), equation (3.9) becomes 

P;( /A)  d/dt [h’ O(/A) ]=  - 2 ” [ f l h  . O(p) ]  (3.10) 

where h’ = Ah is the static RG transformation of the parameter h, 2” is a function of 
P’(p )  as determined by (3.6), and the matrix SL is defined by the transformation of the 
RHS of (3.9). In the present case the operator 

(3.11) 
I 

forms an invariant subspace. Hence both A and are reduced to two scalars A ,  w. The 
scale factor b‘ which is needed to restore the initial form of the master equation is just 
the ratio of these two scalars, 

b‘ = A/w. (3.12) 

4. The transformation of the master equation 

In this section we perform the RG transformation of equation (3.9) into (3.10). The LHS 
of equation (3.10) is the static RG transformation of the magnetic field. In the Kadanoff 
approximation, the decimation with b = 2 gives 

A d  = (1 + 2 tanh (K:  ) [I + tanh2(Kz ) ] - ‘ ld  

A b  =[2 tanh”2Kz(1+tanhK~)(1+tanh2Kz)-’]d. (4.2) 

(4.1) 

while the spin-block transformation gives 

In order to perform the transformation of the RHS of (3.9), we will focus our 
attention on a typical term, W I P e ~ , ,  in this expression. Following equations (3.5) and 
(3.11) the RHS of (3.9) is 

2 ( h  . O(a))  = 2 c WiPe(Ti, 
I 

(4.3) 
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The combination W,Pe is P, from which the contribution of the bonds around ui is 
omitted (Achiam and Kosterlitz 1978) (figure 2). 

Figure 2. The interactions which appear in WiPe(u) are the ones usually in P,(u) except for 
those around ui. 

The decoupling of ut from its neighbours is an essential feature of Wipe, and is the 
result of the detailed balance condition. Thus the trace of U, in the ith term can be done 
exactly in the RG transformation: 

WPe TrqUIuP,  U). (4.4) 

Generally, the trace of the rest of the U cannot be performed so simply. We use the 
potential moving trick in order to decouple different directions and to have an effective 
one-dimensional problem where the trace can be performed. However, if we move 
exactly the same potential as in the static case we create a new coupling to U, in some 
directions, with a negative interaction. To solve this problem we perform another 
potential moving trick and spread these negative interactions over all other interactions 
in this direction. Since there is a finite number of extra negative bonds and an infinite 
number of other bonds in the same direction, this potential moving trick will not change 
the magnitude of any interaction except for the extra negative interaction which 
becomes null. 

This extra approximation is still within the error of the approximation (2.7), as was 
discussed at the end of 0 2. We have to repeat it after each standard potential move, so 
that the ut (or the corresponding transformed spin) will be decoupled in all directions, as 
demanded by (4.4). 

In the following we will demonstrate this procedure in the relatively simple situation 
where U, is an intermediate spin (see below). The other situations are discussed in the 
appendices. 

Suppose that U, is an intermediate spin, i.e. it does not appear in (2.11) (or 2.12) (see 
figure 3 (a, b)) .  This spin is decoupled from its neighbours in the x direction due to W,. 
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Figure 3. ( 0 )  The interactions in W,(a)P,(a) for a typical intermediate spin ai. The RG is a 
decimation transformation. ( b )  As in ( a )  except for a spin-block transformation instead of a 
decimation transformation. (c) The configuration of the interactions after performing the 
potential moving trick and the cancellation of the negative bonds. (d )  As in (c) except for a 
spin-block transformation instead of a decimation transformation. 

However, after the potential moving trick it will be coupled in the y direction with a 
negative interaction. This artificial negative interaction is the result of the A in the 
approximation (2.7). It can be eliminated by extracting an infinitesimal amount of 
interaction from all the other y bonds. The sum of the infinitesimals suffices to annul the 
two negative y bonds, but of course each of the other y bonds is not affected. Now the vi 
is decoupled (figure 3c, d )  and the Trc,cri will contribute zero. 

The calculation of the contribution from 9pi where vt is not an intermediate spin is 
more complicated. Since vi is not intermediate, it is connected to some p which will be 
denoted as pi. We will call the space around pi which is bound by its four next-nearest 
neighbours 'the dynamic region'. Si(cr) differs from PJv) only in the dynamic region. 
Thus the summation over the crj, where j is out of the dynamic region, is exactly the 
same summation as in the static RG transformation of P,(v). In other words, the 
summation over {vj} results in PL(p) when the contribution from the dynamic region is 
omitted. That is, we eliminated the dynamic region interaction from P:(p) by multi- 
plying with Wl ( p )  and dividing by the contribution, A,  to the free energy which results 
from the RG transformation in the dynamic region, i.e. 

PL(p)W: ( @ ) / A .  (4.5) 
We still have to calculate the contribution from the summation over the dynamic 

region spins vi. This sum is performed explicitly in the appendices for both the 
decimation and spin-block transformations. It is shown that this sum is proportional to 
Pi, 

dgi. (4.6) 
After summing over i in ( 3 3 ,  using (4.5) and (4.6) we obtain: 

where c is a combinatorial factor. 
(4.7) 
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The master equation after the RG transformation is 

and the time scaling 7' = rA/w will keep the master equation in an invariant form. 
The w are calculated in the appendices. The results are as follows. 
In the decimation transformation, 

C O S ~ ~ [ K , ( ~ ) ~ ' - ~ ] C O S ~ ~  [Ky(b)b2-d]. . . cosh' [Ki(b)bf-dI 
cosh2[K,] cosh2 [bKy] . . . co~h*[b'-'K~] wd = 

(4.9) 

where we have a d-dimensional hypercubic lattice with 1 = 2 , 3  . . . , for y, 2, . . . , cor- 
respondingly. The K are defined in (2.15)-(2.18). 

In the spin-block transformation: 

a b  = (2ax)(2ay) (2ad)wd (4.10) 

where 

ai = tanh1/2(bf-1Kf)[1 + tanh(b'-'Kl)]-' + tanhf/'(K;)[l+ tanh(K;)]-'. 

5. Discussion 

The results obtained in 3 4 can be tested in one dimension. In this limit the trans- 
formations become exact, and can be compared with the exact result of Glauber (1963). 
The fixed point in 1D is 

tanh K* = 1. (5.1) 

The factor 2a, is one; hence w = wd = wb. For b = 2 we get 

A =2 .  1 w =2, 

Thus, according to (3.12), 

2 = 2  (5.3) 

which is the exact result. 
Another interesting limit is the Migdal(l975) approximation. This approximation 

can be obtained as a limit of the Kadanoff approximation if we assume that all the results 
which were obtained in the RG transformation in the x direction are valid also in the 
other directions. In our results this is implied by equations (4.5)-(4.6). Hence, for the 
decimation ( b  = 2), 

= [cosh'(K"/2)/~0~h~(K*)]~. (5.4) 

For d = 2, K* = 0.609. Hence 

z = 2 * 5 .  ( 5 . 5 )  

This result differs from the one obtained by Chui et a1 (1979). They started with the 
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original factorisation-decimation scheme of Migdal(1975), and assumed the equation 
of motion for one block. This assumption leads to fdd = [ c ~ s h ~ K ( b ) / c o s h ~ K ] ~  + 1 at the 
fixed point. Another problem which has arisen in their calculation is common to all 
decimation calculations. We used (4.1) in order to derive (5.5). However, (4.1), which 
was obtained by applying the RG transformation on a small magnetic field, is inconsis- 
tent with the original decimation idea: 

p / u  = 0. (5.6) 
p, U are the static indices characterising the phase diagram and correlation length. 
Equation (5.6) results from the fact that in the decimation transformation the spin’s 
scale factor (Wilson and Kogut 1974), b-””, is unity. To overcome this contradiction, 
we have to use the spin-block transformation. Although this transformation has defects 
(Kadanoff 1976), which will not be discussed here, it does not suffer from this 
inconsistency. Using (4.6), (4.2) and (5.4) we get, in the spin-block approximation, 

z = 2.24. (5.7) 
Now it is time to compare our result (5.7) to other estimates of z which have 

appeared in the literature. We have already discussed the result obtained by Chui et a1 
(1979) and its connection to the potential moving approximation. Suzuki et a1 (1979) 
also tried to calculate z using the potential moving trick. They first moved all the bonds 
within a block to its edge, and then calculated the equation of motion of the first 
moment of the probability distribution after a decimation along the edges (Achiam 
1978a). The static exponents and fixed point are not the ones appearing in the potential 
moving approximation. Their calculation suffers from the fact that they were based on 
decimation in two dimensions, in addition to other uncontrolled approximations. 

Other values of z are: real-space RG transformation to the second order of the 
cumulant expansion on a triangular lattice, z = 2.2 (Achiam 1978b); high-temperature 
series, z = 2,125 (Ricz and Collins 1976), z = 2.0 (Yahata and Suzuki 1969); and 
Monte Carlo simulation, z = 1.85 (Stoll et a1 1973). 

Appendix 1. The decimation transformation of equation (4.3) 

First we perform the infinitesimal shifting of all the y bonds so that the actual pi(p2 in 
figure A l )  is decoupled from its neighbour. Then the summation in the x direction is 
straightforward. All the bonds in the x direction which are not between the actual w i  (p2 

Figure Al .  The decimation transformation ( b  = 2) of the master equation-the bond 
configurations after the potential moving trick is applied to the y bonds. Each line 
represents an interaction of K strength. 



Critical dynamics and the potential moving approximation 1365 

in figure A l )  and its nearest-neighbour p ( p l  and p3 in figure A l )  give the usual static 
contribution to PL(p) ,  

pew c0sh~K:(2~’-~ cosh2bKx)-1 ( A l . l )  

where the last factor came from the contribution to the free energy. The - means that 
we have not integrated yet in the y direction. The bonds between p1 and p3 contribute 

P Z  TrVlmz expEK(mp1 + ( T z ~ z ) I  = PA cosh2K 

or for general b 

/412’-’ Cosh2b-2K. (A1.2) 

From equations (Al . l )  and (A1.2) it follows that the total contribution to (3.10) is 

(A1.3) 

where f i i  means that spins which still have to be integrated in the y direction are also 
included. K,(b) is given by equation (2.16). 

The summation in the y direction is done exactly as in the x direction after a 
potential moving trick of the x bonds, leading to 

2cosh2[K,(b)] c~sh~[K,(b)/b][c~sh~(K~b) cosh2K,]-’ pi WiPk (A1.4) 

where all the different K were defined in equations (2.15)-(2.18). Equations (A1.4) and 
(4.3) give 

(A1.5) 

i 

o d  = cosh2Ky(b) cosh2K: [cosh2KL cosh2K,]-’. 

For a d-dimensional system, equation (A1 S) becomes (4.5). 

Appendix 2. The spin-block transformation of equation (4.3) 

This procedure is quite similar to the decimation transformation. After performing the 
first potential moving trick, such that all the y bonds were put between two points of the 
lattice, the situation is as follows. The particular ci of the ith term in (4.3) (i.e. p3  in 
figure A2) is coupled with negative interaction to its neighbours in the y direction. 
These two bonds can be cancelled out by another potential moving trick which changes 
the other y bonds by a negligible magnitude only. After the shifting the vi(u3) is 

Figure A2. The spin-block transformation of the master equation-the bond configurations 
in the x direction after applying the potential moving trick on the y bonds. The full lines, 
dotted lines and broken lines represent K, p, -K interactions, respectively. 
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coupled to its neighbours in the other block (vZ) and to the nearest p ( p l ) .  The trace 
over cri can be performed easily, leading to 

Tr,criiTb = ptanhl’ZKx(l + tanh K~)-* 
(A2.1) 

The trace over the other spins in the x direction which are in the two blocks of size b 

- 
= pax 

where (2.14) has been used in the derivation of (A2.1). 

near cri gives 

pa 2”-’ ~ o s h ~ ~ - ~ ( K , ) 2 .  

The last factor of 2 is the result of two configurations that lead to the same contribution. 
Now we spread the y bonds over the lattice which was scaled in the x direction. We 

take care not to put the y bonds around the pi. If this pi is an intermediate spin in the y 
direction, the trace will be zero. 
From the two pi near the edge of the block we get a contribution 

(4 12. (A2.2) 

This procedure is repeated in all d dimensions. We obtain a new scaled lattice in 
which all the potentials are those of P:(p) except that the bonds around the particular pi 
are missing. Taking into account the contribution to the free energy, we finally obtain 
equation (4.6). 

226-2 Cosh26-2 
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